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A KINETIC ANALYSIS OF COUETTE PLASMA FLOW IN AN ELECTRIC FIELD

V. P. Shidlovskii
Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki,

Steady flow of a completely ionized plasma between parallel plates
moving in their own plane in the presence of an electric field is
examined. The distribution functions of the ions and electrons are
derived from the kinetic Boltzmann equations supplemented by equa~
tions for the electric field. The solution is constructed by means of

a variation of the method of moments; at the same time, it is as-
sumed that momentum is transferred only by ions and heat is trans-
ferred by electrons, The analysis takes into account near collisions
between particles for an arbitrary degree of rarefaction of the plasma.
An example of calculation of the principal characteristics of the flow
is given.

The boundary problems connected with the presence of solid surfaces
in the flow are of far less practical importance in plasma dynamics
than in gasdynamics. This is because a plasma can exist only at very
high temperatures which destroy the majority of materials to a greater
or lesser extent. As a rule, in order to contain a plasma within defin-
ite bounds, strong magnetic fields are utilized, not solid walls. Never-
theless, consideration of problems with bounding surfaces is still of
definite interest in the case of plasma. An approximate solution of
one of the simplest problems of this kind is given below,

1. Let a completely ionized plasma fill the space
between two infinite parallel impermeable planes, one
of which moves to the right and the other to the left at
constant velocities U/2 (Fig. 1). The temperatures of
the plates are also constant, even though they differ
in the general case; without loss of generality, we
can consider that the temperature of the upper plate
is higher than that of the lower one Ty > Tgq. The en-
tire system is within some external electric field,
whose intensity vector lies in the xy-plane. The plates
themselves are not charged and are dielectrics.

The distribution function of the ions Fj and the elec-
trons Fg satisfy the Boltzmann equations
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Here e is the unit charge, m; or mg the mass of a
particle, Eg the vector of the total intensity of the
electric field, Z is the multiplicity of the charge on
the ion, and the right sides of the equations include
integral operators characterizing the effect of colli-
sions of particles of a given kind among themselves
and with particles having the opposite charge. In the
absence of a magnetic field, Eg can be represented
as the sum of two terms

E,=E +E, (1.2)
the first of which corresponds to the external electric
field, while the second characterizes the potential
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field set up by the space charge and determined by
.. Poisson's equation

VE=4M(Z!L¢——H,)~ (1.3)

The symbols nj and ne denote the number densities
of the particles.

In accordance with the conditions of the given prob-
lem, the left sides of Egs. (1.1) can be simplified
somewhat. Thus, by virtue of the steady-state nature
of the processes under consideration, the time deriv-
atives vanish, and by virtue of the geometry of the
problem, it is necessary to equate the derivatives
with respect to x, z, and cg to zero.

For an approximate solution of the problem, we
shall go from the Boltzmann equations to moment
equations obtained from (1.1) by multiplying by some
function of the molecular velocities ¢(cy. Cy, cy) and
integrating over the entire range of variation of the
latter. In our case, we obtain moment equations of
the form

d
—ESc,(pF, av =
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The subscript o in Eq. (1.4) may take values i or
e; and Zj =Z, Zg = -1, »
In addition to equations like (1.4), we need Eq.

(1.3), which, in this case, takes the form
dE
W—lf’w(znz—ne)’ (1.5)

and the condition of irrotationality of the electric field,
written in the form
A (Bt E=0
gy \Fox T Lx} = U (1.6)

To satisfy condition (1.6}, we can set without loss
of generality

E. =0, Ey = const = K.

We shall make use of the method proposed by Lees
and Liu [1], representing ezch of the required func-
tions by two Maxwellian distribution functions:

Fo=F, = 1.7
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Fo=Fg = (1.7)
]
Mg “,I : (cx - v.l‘a,F - Cu.: - c,® (cont d)
= N, (gm;) exp ["‘ma 2T, - jwhen c, >0,

The quantities Ngy Doy Tay Ta, Vxey, and Vxa,
in expressions (1.7), functions of the y-coordinate,
should be determined with the aid of moment equa-
tions like (1.4) with six functions vi(1=1,2,...,86)
for each kind of particle.

When a gas consisting of neutral particles is investigated by a
similar method, representing the distribution function in accordance
with (1. 7) ensures an exact solurion of the boundary problem for the
Boltzmann equation in the limiting case of free-molecule flow. When
studying a plasma, we can no longer completely satisfy Eqs. (1.1)
this way, even when there are no collisions between particles, How-
ever, the object of this method is not to ‘construct an exact solution
of the Boltzmann equations, and on going to the moment equations,
representation in the form of (1.7) is very convenient from the stand-
point of formulating boundary conditions and evaluating the integrals,

2. The selection of the functions @j is to a certain
extent arbitrary. As the first four functions, we take
the quantities mq, macx, maey, Yyma (.® + ¢, + .2, These
functions are additive invariants of the collisions;
thus, when they are substituted in equations like (1. 4),
the integrals A, ¢ turn out to be nonzero only due to
exchange of momentum and energy between particles
of type @ and oppositely charged particles; the inte-
gral Ay ¢y which vanishes due to absence of mass
transfer between particles is an exception. On the
basis of the remarks made here, one can set, in ac-
cordance with definition,

Alml = 02 l’\nq)z = ngc_\-AFl dy = Rxm

Aaq>3 = Ryly AaCP4 = Q“s

where Ry denotes the force caused by collisions of
particles of the type o with oppositely charged par-
ticles, and Qq the energy dissipated as a result of
such collisions.

Two more functions @j are needed, for which we
take @, = macsey, 95 = Yomaey (6 + ¢, 4~ ¢;*). In the gen~
eral case, the collision integrals A, ¢; and Ay g can-
not be found analytically, and the result of their nu-
merical determination depends on the law of interac-
tion between particles. However, in these integrals,
it is not difficult to isolate the terms corresponding
to formulas (2.1). Thus, introducing the determina-
tion of the thermal particle velocity by the formula
w = ¢ — vy, we obtain

2.1)

Ay = Sm.cxc,,AF, av =

= Vs gm,cuAF,, av + gm,wxquF. dV =

== U.raRya ‘ff* § mawxwyAFa dV, (2 . 2)

AaPe = %Smﬂcu (e + e+ ef)AF,dV = % UxiRua —+

T e ‘;m,u‘xwyAFa v+ S M, (it - w,? + w3 AFy dV,

The integral terms in the right sides of (2.2} play
a less important role than the preceding ones and can
be evaluated approximately by replacing the integral
operator AFy by a simplified model. Following the
example of reference [2], we take

Py

AF“::P' (F,(m——FG) . (2‘3)

a

ny .

]
Fig. 1

Here p,, denotes the partial pressure, u the vis-
cosity coefficient of particles of the given type, cor-
responding to the second approximation of the Chap-
man-Enskog theory [3], Fo©) is the Maxwellian dis-
tribution function.

Substituting (2. 3) in the integrand of formulas (2.2)
and taking into consideration that

Su‘xqu,(O) av = Sw,,wzFJ") av =0

and also recalling the definition of the heat flux vector
and the stress tensor

q,= L m Sww“’F,x av,

) a -Pnk = magwnwkpa av,

we obtain

( MmaWWyAF g dV == — Pa Py,
o 2%
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Formulas (2.2) can now be rewritten in the form

P
Au% = vleua—‘ —P_-i nym
A LI P 2.4
«Ps == ? vxunya — _ij': (vxupxuu + 9111) . ( . )

The viscosity coefficients for charged particles
interacting by the Coulomb law can be expressed as

in [3]
5 my kT M 2kT (2
Ha = 8.4,(2)( = ) (z‘aﬁ) ’

-]
A;(2) = 2[1n A 4+ 2.2 — fj’;%;ﬂ

4dkT
vm=—z—¢,f;; (Zy=2, Z,=-1}.

2.5)

Here d is the average distance between particles.
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We introduce the notation
Iya = myg S xeitFadV,  lgo="% S er2F,dV. (2.6)

The moment equations like (1. 4) for the functions

¥j (=1,2,...,6) selected can now be written in the
form
d dP e
Fy- (n,vw) = 0, —d% = Z.n.eE, + R.,,
aP,
dl; anaeEy 4+ Ry,

d
e (VxaPrya + Qua) = ZanaeEgveg + Qa,
dI P
-3 ZanaeEuv::u -+ Ruavxa -z P:rua.,
ay Pe

dlgq ¢E 3Z,¢E

dy =ZaEq'qua+ upvua+
1 2 Py
+ 5 Vza Rya— ™ (vxaPsya + Gya)s 2.7

With the aid of the second equation of (2.7), the
fourth equation is transformed into the more conve-
nient form

dv, ., ..
vaa dy + Qy Z_quvxa+Qa- (2.8)

If we assume that the process of near collision of
an electron and an ion possesses the same properties
as the process of elastic collision of smooth bodies,
then it is not difficult to obtain the relationship

R;=—R,,

Q‘ + Qe = (Riv{ + Reve) = Rxe (vxi — vxe)- (2 .9)

The dependence of the quantities in Egs. (2.7) on
the conventional "flow parameters" corresponds to
representation of a two-flow function by formulas
(1.7) and takes the form

1 ”avxa +"avxa
Ny == — n ﬂ, v — 1 1 2 3
=g (rat ), vy, = SR

o Yin, VkT —n, VkT
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3
Iu = bl (nm,Ta,vxa. + na,Tagl’,\'ax)'

16:1 - l I‘Ta. "“. ("Tu,),/’ +

m
b T4 0.2 VR 4 vt VTG
DPa = nrkaa = % (Pxxa + Pwu + Pzza)' (2~ 10)

3. Considering the steady-state motion of plasma
under the conditions of the given problem, it is natu-
ral to assume that the temperatures of the ions Tj
and the electrons Tg, and also the densities nj and
ne, are of the same order of magnitude. If we also
assume that the macroscopic velocities of both com-
ponents are not of an order higher than the corre-
sponding average thermal velocities, then one can ob-
tain important estimates for the displacement stress
Pxy and the heat flux qy, from an examination of
formulas (2.10). Indeed, it can be seen from these
formulas that, other conditions being equal,

nye o (ﬁ)'/l
Pai ™ 4y m}*

Bearing in mind the smallness of the quantity
}/me | mi, we conclude that it is possible to neglect
the quantities Pxye and qyj as compared with Pyyi
and dye, respectively.

In order to simplify the formulation of the boundary conditions
when solving the problem of Couette plasma flow, we shall consider
that the particle charge is not changed when the particles are re-
flected from a surface. Moreover, in accordance with the assump-
tions made above, we assume that when ions are reflected, there is
total accommodation of the tangential component of the momentum
and when electrons are reflected, there is total accommodation of
the thermal energy to conditions on the surface. In other words, the
macroscopic velocity of reflected ions at the surface is equal to the
velocity of motion of the plate, and the temperature of the reflected
electrons at the point of reflection is equal to the temperature of the
plate.

As appears from the above, the true distribution
of the macroscopic velocity of the electrons is not
important in determining the total displacement stress
in the flow. Thus, for example, one can assume that
Vse, = Vxy,y Ve, = Uxty; a8 We shall see later, this means
that v, = vy = vx. Turning to the problem of the tem-
perature of the ions and bearing in mind the station-
arity of the processes under investigation, we shall
consider the plasma to be in equilibrium, that is, we
shall set Tj, = Te, = Ty and Tj, = Te, = Ty; as we
shall see later, these two relationships are equivalent
to the condition Tj = Te.

We shall consider the density of the ions to be pro-

_portional to the density of the electrons, that is, n;, =

= Dn,, n; =Dne, n = Dn, The proportionality fac-
tor D depends in this case on the degree of rarefac~
tion of the plasma and on the multiplicity of the charge
on the ions Z. The total density of the plasma will be
expressed as

n=ni+nc=(1+D)ne, .1

with analogous expressions for n; and n,. Taking these
assumptions into account, the boundary conditions of
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the problem take the form

=U, T,=T,=~yT,;wheny=ia.

(3.2)

Ve, = ng = ngwheny =, —1)a .

— 15U, Ty=Ty,

The last condition in regard to density should have been formu-
lated in a somewhat different way; essentially, we should have given
here the total mass of some vertical column of the substance partici-
pating in the motion. However, since this mass was not previously
known, this integral condition can be replaced by a simpler one, as
in (3. 2); however, the exact value of the constant will be determined
after solving the entire problem. It is necessary 1o add to the condi-
tions (3. 2) the condition of impermeability of both surfaces Vyo = 0
when y = 1, a {(2A — 1) +- 1]. We note that, integrating the first
equation of (2.7), taking this condition into account, we obtain
Vyo =0 over the whole flow field; the satisfaction of the last iden-
tity is assumed in deriving certain equations,

As a result of these assumptions, the number of
unknown functions in Egs. (2.7) to be solved jointly
with Eq, (1.5) is decreased. Making use of this fact
and recalling relation (2.9), we eliminate the quanti-
ties Rxy and Ryg from the system (2.7). Thus, by
adding termwise the second equations of this system,
written for ¢ =i and o = e, we get
dpxm‘ E, dE'u

y = (Zn;—n,)eE, = I

since nye = 0 by hypothesis, In a like manner, writing
Pyyi + Pyye = Pyys we obtain from the third equations
of the same system

&”——-E
dy 1'715

a5 2 05

Fig. 2

The fifth and sixth equations of system (2.7)should,
generally speaking, be considered separately for o =
=1iand ¢ = e. This means, in particular, that the ra-
tios nj,/ne, = Dy and nj,/me, = D, can be variables not
equal to each other, However, if we consider the plas-
ma as a whole and take into account that there cannot
be large deviations from quasi-linearity in it, we can
approximately set Dy = Dy = D = const, thus obtaining
the relation (3.1). However, it is obvious from the
foregoing that along with acceptance of the relation
(3.1), it is necessary to reject consideration of the
fifth and sixth equations of system (2,7) for each of
the components separately. Therefore, we adopt the
notation Is; + Iye = I and meglg; + melge = I, and intro-
duce equations for determining the functions I; and Ig;

the equations obtained will be given somewhat later
for the case of small ion Mach numbers,

J
T75g

Fig. 3

Turning to formula (2.5), we express the viscosity
coefficient as

o =B Y ma T (3.3)

where the constant coefficient B is assumed not to
depend on the type of particle; this condition is strict-
ly satisfied only for a quasilinear plasma with Z = 1,
In many cases, it is permissible to linearize formula
(3.3) with the aid of a method widely applied in bound-
ary layer theory (see, for example, [4]). If uqd is the
value of the viscosity coefficient for particles of the
given kind near the lower plate, then, in place of
(3.3), we can accept the approximate relation

e e I GO

Pag T,

It is more convenient to continue further analysis
in dimensionless variables introduced by the formulas
T =TTy
Py = PyS°

n = n°ngy,

) naU,

ve = v.U,
o a (Mg kT
A N

"dde
7

—g°le_ "4 (kT
qua q n VZ“ ( d)

= 155 nghT U, L= IS5 20T
° ° D 1 wET ; \'2 o
E,=ESE,=EB 5 (o), v=yva (.5)

where v is a positive coefficient still undetermined

(it will be shown later that v corresponds to the aver-
age spatial value of dimensionless density). Thetrans-
formed equations will contain a number of dimension-

less parameters, including
¢ mg s Uam,n, ek a
N P - -
Mﬁl U \%de) ks Ra p'ad s T ‘;“Fd >
4nen a 16 1+p R
g g 1o 148 . (3.6)
£ 15 Vann {L + DY CM

*

If the viscosity coefficient is expressed by formula
(3.3), the parameter 8 will not depend on the type of
particle,

Let us restrict ourselves to the case of small ion
Mach numbers in which terms of the order of M% can
be neglected as compared with terms of the order of
unity. Moreover, let D=0 (1), v= 0 (1). With these
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restrictions, Eqs., (2.7) and (1.5) are transformed to
the form (the superscript is omitted for dimensionless
gquantities)

dP oy dE
ng ‘/?2 - VT, T;i = (7) £ @u,
dPrm =21 T E d_qil _
dy Vd ’ dy
Y y Yy (3'7)
s _ 1, 4, 15 p
Fy“"_vx " dy "“]b—-"VB xy
dle — 7 15 dE, . ZD—1
3-TE, ~-‘——-nv3q, 7y = WETTp

If we substitute into Eqs. (3.7) the expressions
(2.10) reduced to dimensionless form by formulas
(3.5) and simplified for the case M{ « 1, then it be-
comes clear that the system obtained decomposes
into two; that is, determination of the densities, tem-
peratures, and electric field intensity can be achieved
independently of the determination of velocities.

4, We now introduce a new independent variable

Y
1= { ndy. 4.1)

Now, the first, third, fourth, sixth, and seventh
equations of system (3.7) take the form (o= T)

NyGs == N30, 4.2)
d dE
7 [moy (01 +82)] = 2L B, 52, 4.3)
n,8; (692 — 6,2) = a, = consl, (4.4)
N CCNCARR) P
d1’| VY1 1 2
12 ¥ moy 1+ ) 5 0F,
= e T man EHE—~7V&12, (4.5)
dE ZD—1
ﬁ:vzb (b=1+D)‘ (4'6)
Integrating Eq. (4.6), we obtain
E, = vebn + E, (4.7

where E! is the constant of integration determined
from the boundary conditions for Ey. After this, Eq.
(4.3) yields

ny0, (0, + 0y) =

= vyb (vebn® + 2Em) +as=a,+gm  (4.8)
With the purpose of transforming Eq. (4.5) to a
more convenient form, we note that, taking (4,2) into
consideration, the average temperature of the plasma
is expressed as
T - Mo (61 4 62)

ny <4 n2

= §;0g (4.9)

In addition, we obtain from Eqs, (4.4) and (4.5)

6=+ (4.10)

Ay
ag+g(n)°

Making use of (4.9), also (4.7), (4.8), and (4.10),
we can represent Eq. (4.5) in the form {primed guan-
tities are derivatives with respect to 1)

(@) T = (as+ g T —

__wt(asd-g) + {4.11)

@t 3 V8o =0.

Integration of the linear equation (4.11) yiélds
T ~—“—<1: (as+g)* —

— 2 Baa et )T () + a (@ + )", (4.12)

7

)=\ (as+gm1™dn,

T

where w4 is a new constant of integration.

1t is not difficuit to find oy and ¢, (the sign preced-
ing the radical is selected from the condition o; + 0y =
= 0) from (4.12) with the aid of (4.9) and (4.10):

= (o +g i [@m— 3],

a=lmt+em[@m+ 2] “.19)

QM) = V= uts® —*/avB (0 + &) “T (M) + e (s + 8)

After this, one can find the values ny, n, and the
average dimensionless density of the plasma n with
the aid of (4.2) and (4.8). Moreover, the density can
be expressed as follows from Eqs. (4.8) and (4.9):

_atgm)
2Ty

(4.14)

where T(n) is determined according to (4.12).

The constants @y, @3, and a4 included in expres-
gions (4.12), (4.13), and (4.14) can be found with the
aid of the group of boundary conditions (3.2) asso-
ciated with temperature and pressure. In this case,
the coefficients A and v [refer to Fig. 1 and the last
of the formulas (3.5)] can always be chosen so that
the upper plate corresponds to the value n = 1/2 and
the lower one to the value n = —1/2, Thus, the bound-
ary conditions used at this stage are of the form

) =Va (=) =1 n (=) =1.(.15)

In formula (4.12), we set ny = —1/2 and introduce

the notation

oz + g (—1) =ay, as =asay, s = ay (ﬂs’)_"',
Ag =gty —g{— 1Y
With the aid of formulas (4.8), (4.10), and (4.12),

also the second and third boundary conditions of (4.15),
we obtain

’ ’ ’
ay =2 —as, a =

=1 —az’ -+ l"/11(11“ =<13' -1+ 5/11 (ﬂa’ - 2)" (4-16)
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Further, after substituting the first of the condi-~
tions of (4.15) into formula {4.12), we obtain the equa~
tion

3 a3 P B ag’
—1—(33 +Ag) Ay —}——2— vz, AT (x5 =+ Ag} sH‘ 19} -

=y

’ g’ L o o3
— | + =0
@ (13 + Ag ) x 3/)(012 Ay 5 Ag

4.17

The quantities oj and o are expressed through
o3 by formulas (4.16) so that there remains one un-
known ;3 in Eq, {4.17). In the general case, this
equation will be transcendental since «, figures im-
plicitly in the expression I'(1/2) and the function I}
[refer to (4.12)] can be represented in elementary
form only for a certain form gin); thus, in order to
solve Eq. (4.17), it is essential to apply some ap-~
proximate method,

5. After determining the quantities vy, 0y, ny, and
ny, it is necessary to go on to determining vy, and Vs
turning to the second and fifth equations of system
(3.7) for this purpose, With the aid of the same trans-
formations as those used in obtaining Eqs,
the equations under considerstion can be represented
in the form

m16: (Vg = vg) = ¥ 25/ svybn 4 & (5.1}
d ) =
@ {161 {80z, + 6905,)) =

= 2rbE e — S B (VI wrbn L @), (5.2)

It should be borne in mind that the average veloeity
of the ions is expressed as

Y + RV,

Do ==
* Ry -y

Taking this formula into consideration, Eg. (5.2}
can be reduced to the form

dv, [dn =

s V2r [uvyb

n/uvxbn—'—ai N]
- 2{ap 4 g)°

{os — ) ]

adr
”TTL

Vin/ wvybn + oy

BN

{5.3)
ag 4+ g

Equation {5.3) can be immediately integrated o
yield

. Vo nvbn + ay
Ve = — % 2{as+ gy

— -3 LR P y

]
15 14 ”n/uv7bn+a .

~ify
With the assumptions we have made, the dimen-

sionless form for writing the boundary conditions for
the velocities is as follows:

v, (o) = Y,

U, (— Y} = — Y, .

{4.2)—(4.86),

ICE AND TECHXNIC A1 PHYSICS b

If we make use of relation (5.1} and the results cb-
tained previously, the boundary conditions for the av-
erage veiocity can be vepresented in the form

- {_} \]=~_ 1 + )r“ ¥ “{/ZXV;I)A:"@_

2 ) Z o b g {Vet '
" (__}___\ __'_'_ Vﬂ/Env?b--{%
?,7\‘ 2/“‘“ P a a3+}i”""i'} (5.5)

The constants o, and «, figuring in formula (5.4)
and the quantities still unknown can be found without
difficulty with the aid of the boundary conditions (5.5).

6., With the aid of {4, 14), the transition to the di-
mensionless physical variable v is performed using
the formula

n
‘z’* =98 IO gn, 6.1)

r (%) 'Q & -+ g (n)

where T(3) is expressed according te (4.13). In the
general case, the integral in the right side of formula
(6.1) should be determined numerically. It is not dif-
ficult to see that the previously introduced coefficients,
v and A, will now be expressed as

e - s
v=[_§ "_??T] E "=‘“§7%T- (6.2}

/e

We shall now compute the average value of the num-
ber density (n) of the plasma by the width of the flow
between the plates:

A’r’v Afw 1;’1
rdy,{ ¢ ziy} =«;Sd¥:

(a1

=v. {6.3)

(A=) /v

Clearly, the guantity v has a definite physical sense
and is proportional to the average spatial value of the
density. As for the guantity A, it characterizes the in-
homogensity of the density distribution; if X < 1/2,
then the average value of the density in the upper part
of the flow region (y > 0) is greater than in the Jower
part, but if A > 1/2, then the increase in density is in
the vicinity of the lower plate.

It should be noted that in the formulas we derived
for the density, temperature, and velocity, some of
the dimensionless parameters appear with the factor
v, and this quantity, as can be seen, is itself deter-
mined from the solution of the problem. On the other
hand, it was shown in formulating the boundary condi-
tions (3.2), that the guantity ng was also previously
unknewn and should be determined essentially on the
basis of the assignment of the average density over
the width of the flow {(n). If the quantity v is found, then
as can be geen from formula (6. 3),

= v

Consequently, the factor v can be excluded from all
results if (n), not ng is sccepted as the characteristic
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value of the density in formulas (3.5) and (3.6). In
this case, however, the boundary condition for the
density of reflected particles n, would be changed.

with this, we-can conclude the description of the general scheme
for solving the problem of Gouette plasma flow. The case X = Ty/Tq =
=4 was considered as an example of the application of this scheme.
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Fig. 4

As was pointed out, the average velocity of the ions is considered to
be considerably lower than the corresponding speed of sound, and the
parameter B [the principal rarefaction parameter, refer to (3.6)] can
take any values from 0 to =, In addition, when the degree of rarefac-
tion is changed, then, generally speaking, the other dimensionless
parameters will change; for example, y, &, and b. In order to estab-
lish just how they will change, we assume that the quantity B changes
only due to density when the values of the temperature and the veloci-
ties of the plates are held constant. If, in this case, the value of E¥

also remains constant, this implies that one can consider that y = const.

On the other hand, we have

4nna%e? 22

U =

Here rpy is the Debye-Hiickel radius. Under the assumption made
above, the value of a /rpy is proportional to V' P and if we take account
of the constancy of the parameter y, it is necessary to consider that
e ~B.

As for the quantity b, it should depend on a /rD and vanish when
a/rD — », Consequently, ome can set, for example,

b= boe‘evE ’

where by and @ are certain given constants.

As noted, the parameters 8; = vB, ¥, = vy, and & = v take the
place of 8, y, and € in the equations we need. For the sake of sim-
plicity in camrying out the computations, we have set

Ti=const =1, gs=p
b= e VB B =y

Figures 2 and 3 show the velocity and temperature profiles ob~
tained under the above-mentioned conditions for several values of the
rarefaction parameter B. As might be expected, in the limiting case
B -> =, the profiles coincide with the corresponding profiles for ordi-
nary Couette flow with compressibility taken into consideration.

Making use of the dimensional notation of the tangential stress
nyi- the local coefficient of friction can be determined as

2P, 145 2x\/T2%\"7
G == U — T D, (%) [(7) vion + “l]‘ (6.4)

Unlike hydrodynamic Couette flow, the coefficient of friction is
found to vary over the width of the flow region. When comparing
various flow regimes, tlie Mach number is considered to be a con-
stant, thus by using the subscript 0 to denote the values corresponding
to the case of collisionless flow when 8 = 0 for conditions on the lower
plate (n = ~1/2), we obtain )

C

O A+b Vajmvip—o
Ch

14+ b V_n/Zu'V'ybo——am.

The graph showing the ratio Cf/c , as a function of § is shown in
Fig. 4. The Stanton number has been taken here as the heat transfer
characteristic,

5= Tye _
- ’"e”acpeU (Ty— Tu) -

_u—1<1n_i>‘/ﬂz—b %
ZH1 Vo Myt —y)

A graph of the variation of the quantity S/§, is also given in Fig. 4.

The curves of the variation of the coefficients of friction and heat
transfer in Couette plasma flow do not contain any essential singulari-
ties, and at high values of 8 behave just like the corresponding curves
for a neutral gas.
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